Superstability of a multidimensional pexiderized cosine functional equation

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Superstability and Stability of the Pexiderized Multiplicative Functional Equation

We obtain the superstability of the Pexiderized multiplicative functional equation fxy gxhy and investigate the stability of this equation in the following form: 1/1 ψx, y ≤ fxy/gxhy ≤ 1 ψx, y.

متن کامل

On the Superstability and Stability of the Pexiderized Exponential Equation

The main purpose of this paper is to establish some new results onthe superstability and stability via a fixed point approach forthe Pexiderized exponential equation, i.e.,$$|f(x+y)-g(x)h(y)|leq psi(x,y),$$where $f$, $g$ and $h$ are three functions from an arbitrarycommutative semigroup $S$ to an arbitrary unitary complex Banachalgebra and also $psi: S^{2}rightarrow [0,infty)$ is afunction. Fur...

متن کامل

on the superstability and stability of the pexiderized exponential equation

the main purpose of this paper is to establish some new results onthe superstability and stability via a fixed point approach forthe pexiderized exponential equation, i.e.,$$|f(x+y)-g(x)h(y)|leq psi(x,y),$$where $f$, $g$ and $h$ are three functions from an arbitrarycommutative semigroup $s$ to an arbitrary unitary complex banachalgebra and also $psi: s^{2}rightarrow [0,infty)$ is afunction. fur...

متن کامل

On the Superstability of the Pexider Type Trigonometric Functional Equation

We will investigate the superstability of the hyperbolic trigonometric functional equation from the following functional equations: fx y ± gx − y λfxgy andfx y ± gx − y λgxfy, which can be considered the mixed functional equations of the sine function and cosine function, the hyperbolic sine function and hyperbolic cosine function, and the exponential functions, respectively.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: ScienceAsia

سال: 2021

ISSN: 1513-1874

DOI: 10.2306/scienceasia1513-1874.2021.029